<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>Sonae Indústria, S.G.P.S., S.A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme holder</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Declaration number</td>
<td>EPD-SON-20160226-IBA1-EN</td>
</tr>
<tr>
<td>Issue date</td>
<td>11/17/2016</td>
</tr>
<tr>
<td>Valid to</td>
<td>11/16/2021</td>
</tr>
</tbody>
</table>

Particleboard, coated with melamine impregnated paper

Sonae Indústria, S.G.P.S., S.A.

www.bau-umwelt.com / https://epd-online.com
1. General Information

Sonae Indústria, S.G.P.S., S.A.

Programme holder
IBU - Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Declaration number
EPD-SON-20160226-IBA1-EN

This Declaration is based on the Product Category Rules:
Wood based panels, 07.2014 (PCR tested and approved by the SVR)

Issue date
11/17/2016

Valid to
11/16/2021

Owner of the Declaration
Sonae Indústria, S.G.P.S., S.A.
Lugar do Espido
Via Norte
P.O. Box 1096
4471-909 Maia
Portugal

Declared product / Declared unit
Particleboard, coated, per m²

Scope:
This document refers to a representative sample of particleboard, coated with melamine impregnated paper, manufactured in the following plants of the Sonae Indústria group:
- BHW Beeskow Holzwerkstoffe GmbH, Radinkendorfer Strasse 71, 15848 Beeskow, Germany
- Glunz AG - Nettgau Plant, Strohmweg 1, 38489 Nettgau, Germany
- Sonae Indústria - P.C.D.M., SA, Quinta da Poça - S.Paio de Gramaços, 3404-954 Oliveira do Hospital, Portugal
- Sonae Novobord (Pty) Ltd, White River, South Africa
- Tableros Tradema, Carretera Córdoba-Valencia Km 126, Estación Linares-Baeza, 23490 Linares (Jaén), Spain
- Tableros Tradema, Calle de Los Títulos, 29, 47009 Valladolid, Spain
- Tafisa Canada, 4660 Villeneuve, Lac-Mégantic (Qc) G6B2C3, Canada

The production volume of these plants covers close to 100 % of the total production of particleboard by the Sonae Indústria group.

The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR

Independent verification of the declaration according to /ISO 14025/

[] internally [x] externally

Prof. Dr.-Ing. Horst J. Bossenmayer
(President of Institut Bauen und Umwelt e.V.)

Dr. Burkhard Lehmann
(Managing Director IBU)

Manfred Russ
(Independent verifier appointed by SVR)

2. Product

2.1 Product description
Particleboard is a panel-shaped wood-based material in accordance with /EN 312/ and /EN 14322/, as well as with /ANSI A208.1-2016/, for the North American market, which is manufactured in a flat-pressing process by means of compression under heat of small wood particles with adhesive.

Due to their various densities and adhesive systems, coated particleboards can display a variety of material properties that make them suitable for a wide range of applications in construction and furniture manufacturing.
properties and qualities like moisture resistance, fire-retardant or others.

2.2 Application
The area of application for coated particleboard primarily involves decorative interior furnishings and furniture manufacturing.

Particleboard can be classified into the following use classes according to the requirements established in /EN 312/:
- P1 General purpose boards for use in dry conditions
- P2 Boards for interior fitments (including furniture) for use in dry conditions
- P3 Non load-bearing boards for use in humid conditions
- P4 Load-bearing boards for use in dry conditions
- P5 Load-bearing boards for use in humid conditions
- P6 Heavy duty load-bearing boards for use in dry conditions
- P7 Heavy duty load-bearing boards for use in humid conditions

Additionally, the classification according to /ANSI A208.1-2016/ defines the following classes:
- M1, MS Medium density commercial grade
- M2, M3i Medium density industrial grade

2.3 Technical Data
Due to the large variability of product properties and quality grades, the table below only shows the range of technical characteristics for classes P1 to P3 (boards for non-structural applications).

Structural boards as well as customized products have different technical characteristics from the ones shown.

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending strength (longitudinal) according to /EN 310/</td>
<td>5 - 15</td>
<td>N/mm²</td>
</tr>
<tr>
<td>E-module (longitudinal) according to /EN 310/</td>
<td>1050 - 2050</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Material damness at delivery according to /EN 322/</td>
<td>5 - 13</td>
<td>%</td>
</tr>
<tr>
<td>Tensile strength rectangular according to /EN 319/</td>
<td>0.14 - 0.45</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Thermal conductivity according to /EN 12524/</td>
<td>0.12</td>
<td>W/(mK)</td>
</tr>
<tr>
<td>Water vapour diffusion resistance factor according to /EN 12524/</td>
<td>15 - 50</td>
<td>-</td>
</tr>
<tr>
<td>Density limit deviation from average value according to /EN 323/</td>
<td>+/- 10</td>
<td>%</td>
</tr>
<tr>
<td>Strength tolerance according to /EN 324/</td>
<td>+/- 0.3</td>
<td>mm</td>
</tr>
<tr>
<td>Length and with tolerance according to /EN 324/</td>
<td>+/- 5.0</td>
<td>mm</td>
</tr>
<tr>
<td>Edge straightness tolerance according to /EN 324/</td>
<td>+/- 1.5</td>
<td>mm/m</td>
</tr>
<tr>
<td>Perpendicularity according to /EN 324/</td>
<td>+/- 2.0</td>
<td>mm/m</td>
</tr>
<tr>
<td>Thickness swelling according to /EN 317/</td>
<td>12 - 25</td>
<td>%</td>
</tr>
</tbody>
</table>

In the case of boards produced for the North American market, technical characteristics cover grades M1 to M3i (according to /ANSI A208.1-2016/).

Declaration of Performance (DoP)
For more details on technical information, please see the respective products’ Declaration of Performance (DoP) available at:
- www.glunz.de/dop
- www.tafibra.com/pt/dop
- www.tafibra.com/es/dop

2.4 Placing on the market / Application rules
For the placing on the market in the EU/EFTA (with the exception of Switzerland) the Regulation (EU) 305/2011 applies. The products need a Declaration of Performance (DOP) taking into consideration /EN 13986:2004+A1:2015 Wood-based panels for use in construction - Characteristics, evaluation of conformity and marking/ and the CE-marking.

For the application and use the respective national provisions apply.

Sonae Indústria particleboards are permeable wood-based materials for constructive and decorative applications and comply with the following product standards:
- /EN 312:2010/, Particleboards – Specifications
- /EN 13986:2005/, Wood-based panels for use in construction – Characteristics, evaluation of conformity and marking (for construction boards only)

2.5 Delivery status
Particleboard ranging in thicknesses from 8 to 48 mm can be purchased as coated boards. The boards are offered in standard formats. Custom formats are also available.

The following table includes minimum and maximum dimensions for the boards supplied world-wide. Some of the combinations for sizes may not be available in all markets.

<table>
<thead>
<tr>
<th>Name</th>
<th>Min value</th>
<th>Max value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>8</td>
<td>48</td>
<td>mm</td>
</tr>
<tr>
<td>Width</td>
<td>590</td>
<td>2850</td>
<td>mm</td>
</tr>
<tr>
<td>Length</td>
<td>1025</td>
<td>6250</td>
<td>mm</td>
</tr>
</tbody>
</table>

For updated information on available dimensions, please refer to:
- www.glunz.de
- www.tafibra.com
- www.tafisa.ca
- www.sonae.co.za
2.6 Base materials / Ancillary materials

Coated particleboard bonded with UF/MUF consist of (dimensions as % by mass):
- Wood chips, approx. 85%
- Water, approx. 4-7%
- UF glue / MUF glue (urea resin, melamine urea resin), approx. 8-10%
- Paraffin wax emulsion, <1.5%

Furthermore, sawmill residues and recycled wood are also used as key raw materials in the production of particleboard.

Coated particleboard bonded with PMDI consist of (dimensions as % by mass):
- Wood chips, approx. 85%
- Water, approx. 4-7%
- PMDI glue, approx. 8-10%
- Paraffin wax emulsion, <1.5%

The entire particleboard range can be made available on request as FSC® certified or PEFC™ certified products. Additionally, all range includes CE marked products.

2.7 Manufacture

The wood is chipped, screened and dried. Surface layer and core layer materials are then glued and scattered on a forming belt as a particles’ mat. This is pressed into panels under high pressure in a hot press. The panels are trimmed, picked and sanded on both sides after cooling. Finally the panels are coated with melamine impregnated paper in a short-cycle press.

All leftovers incurred during board manufacture are redirected into the process or used as fuel to supply the energy needs of the manufacturing process on site.

A process diagram is presented below.

2.8 Environment and health during manufacturing

Health protection: Due to the manufacturing conditions, no special health protection measures over and beyond the regulatory guidelines are required. The reference occupational exposure limit values are complied with.

Emissions into air: Waste air generated during production is cleaned in accordance with regulatory requirements. Emissions have to comply with the values specified by the operation licenses of the different sites, specified according to national laws.

Emissions into water/soil: No normal process contamination of water or soil exists. Typically, the production process of particleboard does not have any production-related waste water.

Noise: Noise surveys are required and are performed for each site according to respective national regulations. Noise-intensive plant areas such as chipping are encapsulated or protected appropriately by structural measures.

Wood from indigenous, largely regional forest plantations is used for manufacturing particleboard. This wood is typically procured from forests within a radius of up to 250 km of the plants’ locations (maximum distances for wood procurement in extreme cases can reach 600 to 850 km, depending on the site). Furthermore, sawmill residues and recycled wood are also used as key raw materials in the production of particleboard.

Wood from indigenous, largely regional forest plantations is used for manufacturing particleboard. This wood is typically procured from forests within a radius of up to 250 km of the plants’ locations (maximum distances for wood procurement in extreme cases can reach 600 to 850 km, depending on the site).
Whenever necessary (close to non-encapsulated areas), the use of ear protection is required (PPE, Personal Protective Equipment) within Sonae Indústria sites, as an additional safety measure.

As mentioned in Clause 2.7, the production sites are all /ISO 14001:2009/ certified.

2.9 Product processing/Installation
Sonae Indústria coated particleboard can be sawn, milled and drilled using standard machinery or (electric) power tools. Carbide-tipped tools should be given preference, especially on circular saws.

Respiratory protection should be worn when using hand-held equipment without suction devices.

Please refer to the respective data sheets for further processing recommendations.

2.10 Packaging
Sonae Indústria particleboards are supplied on squared timber bound by plastic or metal bands and covered with corrugated cardboard and, on the bottom, with a cover board.

Particleboard and steel or PET packing bands for transport packaging can be sorted and directed to the recycling circuits. If re-use or recycling is impractical, the packaging should not be landfilled, but rather directed towards energy recovery.

2.11 Condition of use
The components making up coated particleboard correspond with the base material compositions as outlined in Clause 2.6. During hot pressing, the binding agent is linked irreversibly by means of poly-condensation and firmly bonded with the wood. The binding agents are chemically and stably bound to the wood.

VOC emissions: Sonae Indústria coated particleboards are labelled as class A+ according to the French regulation on the labelling of emissions of volatile pollutants from construction and decoration products (with reference to the wall scenario, as a worst case).

Sonae Indústria particleboard coated with melamine impregnated paper at an average area weight of 10.1 kg/m² store 15.3 kg CO₂/m² equivalent over their service life.

2.12 Environment and health during use
Environmental protection: According to current information, water, air and soil are not exposed to any dangers when the respective products outlined above are used as designated.

Health protection: According to current information, no damage to or impairment of health can be anticipated when particleboards are used as designated.

With the exception of low volumes of formaldehyde for UF/MUF-bonded particleboard, VOC emissions from products are negligible, and are natural wood ingredients.

2.13 Reference service life
Due to the wide range of applications of Sonae Indústria coated particleboard, no reference service life is declared.

2.14 Extraordinary effects

Fire
Fire retardant classification of particleboard is done according to /EN 13986/. Fire retardant classes are defined in accordance with /EN 13501-1/. The classification is D-s2, d0.

Fire protection

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building material class</td>
<td>D</td>
</tr>
<tr>
<td>Smoke gas development</td>
<td>S2</td>
</tr>
<tr>
<td>Burning droplets</td>
<td>d0</td>
</tr>
</tbody>
</table>

Water
No ingredients are washed out which could be hazardous to water. Particleboards are not resistant to permanent exposure to water.

Mechanical destruction
Mechanical destruction of particleboards can result in sharp edges on the broken panel edges (risk of injury).

2.15 Re-use phase

Recycling: Sonae Indústria particleboards from construction can be collected separately and utilised in the manufacture of particleboard. This is based on the condition that the wooden boards are not fully glued.

Energy recovery: Due to the high heating value of approx. 16.6 MJ/kg at 20 % moisture content assumed for post-consumer boards, particleboards can be used for energy recovery and the generation of heat and electricity (e.g. in CHP plants), following the cascading principle for wood.

2.16 Disposal
Sonae Indústria particleboard leftovers and residual materials incurred as a result of demolition measures on the building sites should be primarily directed towards material recycling. If this is not possible, they must be directed toward energy recovery instead of landfilling.

Waste code according to the /European List of Waste/: 17 02 01

2.17 Further information
Further information such as technical datasheets, etc. can be downloaded under:

www.sonaeiindustria.com
www.glunz.de
www.tafibra.com
www.tafisa.ca
3. LCA: Calculation rules

3.1 Declared Unit
The declared unit for the LCA is 1 m² of average Sonae Indústria particleboard. The weighted average was calculated based on production volumes from representative plants in all countries where Sonae Indústria was operating in 2012.

Information on the declared unit

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declared unit</td>
<td>1</td>
<td>m²</td>
</tr>
<tr>
<td>Conversion factor to 1 kg</td>
<td>0.099</td>
<td>-</td>
</tr>
<tr>
<td>Mass reference</td>
<td>10.10</td>
<td>kg/m²</td>
</tr>
</tbody>
</table>

3.2 System boundary

Type of the EPD: cradle to gate - with options.

Modules A1 – A3 of the production stage cover the manufacturing of the products, including raw material extraction and processing, energy generation, the production of ancillary products and packaging materials, transport, as well as all waste treatment processes. Eventual benefits of recycling or energy recovery are neglected.

The resource aspects of wood were inventoried via material inherent properties as resource extraction of CO₂ from the atmosphere and the lower heating value as the use of renewable energy. Material inherent properties are subject to co-product allocation as ruled in /EN 15804/.

For the input of post-consumer wood, the carbon stored in wood is inventoried as material inherent property as negative input of stored carbon, expressed in CO₂-equivalent, whereas the energy content of wood is inventoried as input of renewable secondary material/fuel (as applicable).

The use of secondary wood as a material or fuel input to the product system is inventoried from the end-of-waste state of the recycled wood onward.

Module A5 covers the transport of the packaging material from the construction site and its disposal. Default end-of-waste states for the packaging materials from the packed products at the construction site are defined in analogy for wastes occurring in modules A1-A3. Eventual further inputs for the installation of the products are not considered due to the broad applicability of the assessed products.

The substituted primary material from the net amount of recycled material and from recovered energy exported from the product system in module A5 are declared in Module D.

Module C3 covers the preparation of the post-consumer board to become a secondary fuel: the end-of-waste status for recycled wood-based boards is defined as the point where they have been sorted and chipped, ready to be used as secondary fuels. In line with /EN 16485/, the export of the biogenic carbon stored in the board, expressed in CO₂-equivalent is also reported in module C3.

Module D compiles all the benefits and burdens associated with the secondary fuels, secondary materials and exported energy leaving the production system in line with /EN 16485/.

Therefore, module D covers the avoided burdens from recycling and from energy recovered from the waste treatment in module A5 as well as the transport of the obsolete boards to a biomass combustion plant, the combustion process itself and the loads and benefits of the substitution of fossil fuels and/or electricity.

Substitution effects in module D are always calculated for the net amount of secondary material or secondary fuel of the product system in line with /EN 16485/.

3.3 Estimates and assumptions

For the quantification of the net flows of recycled wood (input of post-consumer wood used as a fuel minus post-consumer wood exiting the product system into module D for energy recovery), it was assumed that all inputs of post-consumer wood are used as a fuel; inputs of post-consumer wood beyond the need of wood fuel used in production was considered to be used as a recycled material input. Beyond that, no relevant estimates or assumptions had to be made beyond the information provided in this EPD.

3.4 Cut-off criteria

The applicable criteria for the exclusion of inputs and outputs are defined in /EN 15804/, clause 6.3.5, and in the /IBU PCR part A/ (IBU 2013), respectively.

All data were taken into account that resulted from the data collection procedure in the plants, e.g. related to fuels, raw material input, use of ancillary materials, waste flows, emissions into air, water use, waste water, transport means and transport distances, etc.

Expenses for the general management, research & development, administration and marketing – if known – were not taken into account.

The production of eventual packaging of ancillary material or other inputs used during production (and some of the reported wastes) were generally neglected; in most cases reusable bins or containers are used. In addition, the amounts of reported (unspecific) wastes are that small that their production can be considered not relevant for the life cycle assessment. Additional plant specific information can be found in the respective chapters for each plant.

Beyond that some plants reported ancillary materials that were cut off due to very small amounts and as inputs not directly related to production processes but to the maintenance of infrastructure, e.g. acetylene and oxygen for soldering, etc.

With this approach also mass and energy flows below 1 percent of total mass and energy flows caused by the declared products were included in the assessment.

Beyond that, no material or energy flows were neglected that would have been known by the persons responsible for the project and that could have been expected to contribute significantly to the environmental indicators declared. It can thus be assumed that the total contribution of the neglected processes is not higher than 5 % of the declared impact categories.
3.5 Background data
Datasets from /ecoinvent v.2.2/ including all updates available under www.lc-inventories.ch were used as background data exclusively; these updates include the update of energy mixes and some pro­cess chains, e.g. for the provision of natural gas. Therefore, the latest update of the background data took place in 2014.

3.6 Data quality
The requirements on the data quality and the background data correspond to the provisions in /EN 15804/ and the /IBU PCR part A/ (IBU 2013) respectively:
- Data are as current as possible. Datasets used for calculations were updated within the last 10 years for generic data and within the last 5 years for producer specific data;
- Datasets are based on 1 year averaged data as a general rule;
- The time period over which inputs to and outputs from the system are accounted for is 100 years from the year for which the data set is deemed representative;
- The technological coverage reflects the physical reality for the declared products;
- The background datasets comply with the quality guidelines of /ecoinvent v.2.2/; deviations from the methodological prescriptions of /EN 15804/ and the /IBU PCR part A/ (IBU 2013) respectively are possible but acceptable according to /IBU PCR part A/ (IBU 2013).

3.7 Period under review
The company data gathered for this EPD represents the year 2012.

3.8 Allocation
The inventories for the wood inputs were taken from /ecoinvent v.2.2/. In /ecoinvent/, the forestry and sawmilling processes are allocated based on revenues of the different co-products of a joint co-production process (/Werner et al., 2007, based on Schweinle, 2000/). In these datasets, resource corrections are made for incorporated biogenic carbon and renewable energy; these flows thus reflect the real physical flows. In the case of sites where several products were produced and no product specific information was available, all inputs and outputs related to production processes where attributed based on total mass of production; packaging material was attributed based on total volume of the production. Inputs and outputs for coating processes that could not be separated from the data on plant level were conservatively attributed to the particleboard production.

3.9 Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product­specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information
The following technical information is a basis for the declared modules or can be used for developing specific scenarios in the context of a building assessment if modules are not declared (MND).

Installation (A5)
Eventual further inputs for the installation of the products are not considered due to the broad applicability of the assessed products. An average transport distance of 30 km was assumed for packaging waste from the construction site to the recycling plant or to the municipal waste incineration plant. The municipal waste incineration plant is assumed to have an overall energy efficiency of 53 % related to the lower heating value of the waste input; 92 % of the recovered energy is heat, 8 % is electricity (according to specifications of MWI plants in /ecoinvent v.2.2/).

Waste treatment (C3)
10.7 kg of coated particleboard are chipped, of which 8.74 kg are exported as net flows from the product life cycle into module D, assuming a moisture content of 20 %.

Reuse, recycling, recovery potential (D)
10.7 kg of coated particleboard are chipped, of which 8.74 kg are exported as net flows from the product life cycle into module D, assuming a moisture content of 20 %.
5. LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material</td>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
</tr>
<tr>
<td>Transport</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MND</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – ENVIRONMENTAL IMPACT: Particleboard, coated with melamine impregnated paper, per m²

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A5</th>
<th>C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential</td>
<td>[kg CO₂-Eq.]</td>
<td>-8.83</td>
<td>0.94</td>
<td>15.01</td>
<td>-5.26</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer</td>
<td>[kg CFC11-Eq.]</td>
<td>4.28E-7</td>
<td>1.04E-9</td>
<td>4.33E-9</td>
<td>-7.26E-7</td>
</tr>
<tr>
<td>Acidification potential of land and water</td>
<td>[kg SO₂-Eq.]</td>
<td>2.90E-2</td>
<td>1.95E-4</td>
<td>4.03E-4</td>
<td>-8.25E-3</td>
</tr>
<tr>
<td>Eutrophication potential of water bodies</td>
<td>[kg PO₄²⁻-Eq.]</td>
<td>5.11E-3</td>
<td>4.38E-5</td>
<td>5.28E-5</td>
<td>-8.15E-4</td>
</tr>
<tr>
<td>Formation potential of tropospheric ozone photochemical oxidants</td>
<td>[kg ethene-Eq.]</td>
<td>2.19E-3</td>
<td>7.71E-6</td>
<td>1.82E-5</td>
<td>-6.09E-4</td>
</tr>
<tr>
<td>Abiotic depletion potential for non-fossil resources</td>
<td>[kg Sb-Eq.]</td>
<td>3.00E-5</td>
<td>2.66E-8</td>
<td>6.20E-8</td>
<td>-5.81E-7</td>
</tr>
<tr>
<td>Abiotic depletion potential for fossil resources</td>
<td>[MJ]</td>
<td>126.81</td>
<td>0.34</td>
<td>1.77</td>
<td>-129.25</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – RESOURCE USE: Particleboard, coated with melamine impregnated paper, per m²

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A5</th>
<th>C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>54.73</td>
<td>0.00</td>
<td>0.22</td>
<td>-2.96</td>
</tr>
<tr>
<td>Renewable primary energy resources as material utilization</td>
<td>[MJ]</td>
<td>164.87</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>[MJ]</td>
<td>219.60</td>
<td>0.00</td>
<td>0.22</td>
<td>-2.96</td>
</tr>
<tr>
<td>Non-renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>107.82</td>
<td>0.36</td>
<td>2.05</td>
<td>-129.90</td>
</tr>
<tr>
<td>Non-renewable primary energy as material utilization</td>
<td>[MJ]</td>
<td>23.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources</td>
<td>[MJ]</td>
<td>130.89</td>
<td>0.36</td>
<td>2.05</td>
<td>-125.90</td>
</tr>
<tr>
<td>Use of secondary material</td>
<td>[kg]</td>
<td>2.54</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Use of renewable secondary fuels</td>
<td>[MJ]</td>
<td>36.90</td>
<td>0.00</td>
<td>0.00</td>
<td>128.95</td>
</tr>
<tr>
<td>Use of non-renewable secondary fuels</td>
<td>[MJ]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>18.65</td>
</tr>
<tr>
<td>Use of net fresh water</td>
<td>[m³]</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: Particleboard, coated with melamine impregnated paper, per m²

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
<th>A5</th>
<th>C3</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>[kg]</td>
<td>1.03E-4</td>
<td>1.80E-7</td>
<td>2.38E-4</td>
<td>-4.34E-5</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>[kg]</td>
<td>0.57</td>
<td>0.01</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>[kg]</td>
<td>2.66E-4</td>
<td>3.72E-7</td>
<td>1.78E-5</td>
<td>-2.34E-4</td>
</tr>
<tr>
<td>Components for re-use</td>
<td>[kg]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>[kg]</td>
<td>0.28</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>[kg]</td>
<td>0.00</td>
<td>0.00</td>
<td>10.70</td>
<td>0.00</td>
</tr>
<tr>
<td>Exported electrical energy</td>
<td>[MJ]</td>
<td>0.00</td>
<td>3.65</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Exported thermal energy</td>
<td>[MJ]</td>
<td>0.00</td>
<td>3.33</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

6. LCA: Interpretation

Figure 1 illustrates the contribution of each life cycle stage to the overall indicator results of the impact assessment (impact from module A1-A3 = 100 %) for particleboard coated with melamine-impregnated paper. The Figure illustrates that for the GWP, the ODP and the ADP fossil, the benefits from the energy recovery of coated particleboard are higher than the impacts during the life cycle, notably the impacts from production. For other impact categories, the benefits of energy recovery lie between 2 % to 30 %, depending on the impact category under consideration.

The **global warming potential (GWP)** is an indicator for the contribution to climate change and is quantified based on the emissions of gases that absorb radiative forcing. The production of the UF/MUF resins contribute about 45 % to the GWP (excluding biogenic carbon) caused during production of uncoated particleboard. Further contributions stem from the production of heat from light fuel oil and natural gas (about 18 %) and from the generation of electricity (about 10 %). Transport of raw materials are responsible for about 9% of the GWP. For particleboard coated with melamine impregnated paper, 65 % of the GWP are caused during board production, 35 % are associated with the production of the melamine impregnated paper.
Figure 1: Environmental impacts of particleboard coated with melamine impregnated paper along its life cycle (impacts from production modules A1-A3 = 100 %; for illustrative purposes, the biogenic carbon included in the GWP is documented separately)

Figure 2 illustrates that the biogenic carbon stored in the particleboard coated with melamine impregnated paper, expressed as CO₂-equivalent, is higher than the CO₂ emissions from fossil sources, leading to a negative GWP for the production module A1-A3. The potential substitution effect in module D almost entirely offsets the GHG emissions during the production phase (module A1-A3).

Figure 2: Carbon footprint of particleboard coated with melamine impregnated paper

The GWP is dominated by CO₂ emissions and removals.

The ozone layer depletion potential (ODP) is quantified based on the emissions of gases that can destroy stratospheric ozone. The ODP is caused mainly by emissions of Halon 1211, which are associated with the production and transport of natural gas. For uncoated particleboard, around 75 % of the ODP are associated with the use of natural gas in upstream processes for the production of UF/MUF resins.

For particleboard coated with melamine impregnated paper, 62 % of the ODP are caused during the board production, 35 % are associated with the production of the melamine impregnated paper.

The acidification potential (AP) is created with the transformation of airborne emissions into acids, which among other can reduce soil fertility.

Roughly, 35 % of the AP are caused by the upstream processes for the production of UF/MUF resins used in the production of the uncoated particleboard. Electricity generation is responsible for about 20 % of the AP, the transport of raw materials for about 10 %. About 10 % are caused by the on-site combustion processes for the production of heat and, in some plants, for the generation of electricity.

For particleboard coated with melamine impregnated paper, 72 % of the AP are caused during the board production, 22 % are associated with the production of the melamine impregnated paper.

The AP is caused in comparable shares by emissions of ammonia, nitrogen oxides and sulphur dioxide.

The eutrophication potential (EP) quantifies the accumulation of nutrients in soils and watersheds, which can cause increased growth of algae and shifts in species composition.

The EP of the uncoated particleboard is caused by upstream processes for the production of UF/MUF resins (about 40 %), on-site combustion processes (about 15 %) and by the transport of raw materials (about 15 %); electricity generation is responsible for another 10 % of the EP.

For particleboard coated with melamine impregnated paper, 70 % of the EP are caused during the board production, 25 % are associated with the production of the melamine impregnated paper.

The EP is caused mainly by airborne emissions of ammonia and nitrogen oxides as well as phosphate/phosphorus emissions into the groundwater.

The photochemical oxidation potential (POCP) assesses the contribution of airborne emissions that contribute to summer ozone creation.

For the uncoated particleboard, the upstream processes of production of UF and MUF resins cause 45 % of the POCP; another 25 % of the POCP are associated with on-site emissions from combustion processes (CO, SO₂) and from the gluing system (formaldehyde).

For particleboard coated with melamine impregnated paper, 75 % of the POCP are caused during the board production, 22 % are associated with the production of the melamine impregnated paper.

The abiotic resource depletion potential of fossil resources (ADP fossil) assesses the use of scarce fossil resources such a natural gas or crude oil.

The ADP (fossil resources) is caused mainly by the consumption of natural gas and crude oil for the production of the UF/MUF resins and – to a much smaller extend – for the generation of electricity.

The abiotic resource depletion potential for mineral resource (ADP elements) assesses the use of scarce mineral resources such as ores and other mineral raw materials.

The ADP (elements) is caused almost completely by infrastructure processes, such as the buildings required for the production of UF/MUF resins (about 80 %); the main resources contributing to the ADP (elements) are gold and copper.

The main use of renewable primary energy is the heating value of the wood in particleboard; this amount

The main use of renewable primary energy is the heating value of the wood in particleboard; this amount
of non-used renewable energy is exported in module C3 and used energetically as a renewable secondary fuel in module D. The renewable primary energy used as energy is mainly woody biomass.

The major share of the non-renewable primary energy is used energetically, mainly as natural gas in the upstream process for the production of the components of the gluing system and for the production of the melamine of the impregnated paper. A minor share is used as a material, i.e. as components of the gluing systems and of the melamine impregnated paper; this non-renewable primary energy used as a material is not used within the life cycle of particleboard; it is exported in module C3 and used energetically as a non-renewable secondary fuel in module D.

The indicator values for wastes refer to the amount of wastes that is landfilled after an eventual pre-treatment of the wastes.

7. Requisite evidence

7.1 Formaldehyde

For UF/MUF bonded boards:

(tests made on raw boards)

Measuring agency: Eurofins Denmark & LQAI Porto
Test report, date: G14685 & LQAI.MC.42/12, dated 10-05-2012 & 21-05-2012
Result: Formaldehyde emissions tests were performed for particleboards (F-4star class) according to /ISO16000-11/, with the wall panel loading scenario. The measured formaldehyde emissions were lower than 60 mg/m3, resulting in a classification A.

Measuring agency: Eurofins Denmark & WKI Germany & LQAI Porto
Test report, date: G12251 & MAIC-2011-3431 & LQAI.MC.55/12, dated 07-02-2012 & 22-12-2011 & 18-09-2012
Result: Formaldehyde emissions tests were performed for particleboards (CARB 2 class, including P2 and fire retardant) according to /ISO16000-11/, with the wall panel loading scenario. The measured formaldehyde emissions were lower than 120 mg/m3, resulting in a classification B.

For the North American market:

(tests made on raw boards)

Test report date: S14280 & S15015, dated 06-10-2014 & 26-01-2015
Results: Formaldehyde emissions tests were performed for CARB phase 2 and CARB ULEF particleboards according to /ASTM D6007-02/. The measured formaldehyde emissions were lower than 0.09 ppm for CARB phase 2 panels and lower than 0.05 ppm for CARB ULEF panels.

The main part of the wastes associated with the production of particleboard is non-hazardous waste, mainly resulting from the disposal of infrastructure associated with e.g. production halls or roads. Hazardous wastes are generated throughout the production chain, e.g. related to disposal of ashes, production wastes from chemical industry or from the production of primary aluminium for infrastructure processes. The generation of radioactive waste is associated with the production of nuclear power.

The net consumption of fresh water is caused mainly by cooling processes throughout the production chain as well as partly for the generation of electricity.

The further indicators on environmental aspects are singular values that result from the inventorying of waste streams into thermal waste treatment, energy recovery and recycling.

7.2 Checking for the pretreatment of the substances used

(tests made on raw boards)

Measuring agency: TÜV Rheinland LGA Products GmbH, Cologne, Germany
Test reports, date: 0003160770/30 AZ216593, 27 October 2015
Result: The limit values outlined in the German Waste Wood Ordinance are complied with.
Limit values in mg/kg: As 2, Pb 30, Cd 2, Cr 30, Cu 20, Hg 0.4, Cl 600, F 100, PCP 3 and PCB 5.

Metal analysis for Iberian market, based on quarterly analysis:

Measuring agency: IDIT, Instituto de Desenvolvimento e Inovação Tecnológica, Portugal
Test reports, date: 2057/2015 & 2058/2015, 22 December 2015
Result: The limit values outlined in the EPF voluntary standards on the use of recycled wood are complied with. Limit values in mg/kg: As 25, Pb 90, Cd 50, Cr 25, Cu 40, Hg 25, Cl 1000, F 100, PCP 5 and Creosote 0.5.

7.3 TVOC emissions

(tests made on raw boards)

Measuring agency: Eurofins Denmark & LQAI Porto
Test report, date: G14685 & LQAI.MC.42/12, dated 10-05-2012 & 21-05-2012
Result: VOC emissions tests were performed for particleboards (F-4star class) according to /ISO16000-11/, with the wall panel loading scenario. The VOC measurements allowed for a classification A+, when excluding formaldehyde (class A, when taking formaldehyde emissions into consideration).

Measuring agency: Eurofins Denmark & WKI Germany & LQAI Porto
Test report, date: G12251 & MAIC-2011-3431 & LQAI.MC.55/12, dated 07-02-2012 & 22-12-2011 & 18-09-2012
Result: VOC emissions tests were performed for particleboards (CARB 2 class, including P2 and fire retardant) according to /ISO16000-11/, with the wall panel loading scenario. The VOC measurements allowed for a classification A+, when excluding formaldehyde (class B, when taking formaldehyde emissions into consideration).

7.4 PCP/Lindane
(tests made on raw boards)

Measuring agency: EPH Entwicklungs- und Prüflabor Holztechnologie GmbH, Zellener Weg 24, D-01217 Dresden

Test reports, date:
Standard product Supervision Report 02-2015, Order 2515024/3-2, dated 18 December 2015
P3 product Supervision Report 02-2015, Order 2515024/3-1, dated 18 December 2015

Result: The wood preservative agents pentachlorophenol (PCP) and lindane could not be determined in the sample of boards examined, or fulfilled the limit value of 5 mg/kg.
Limit of determination: 0.05 mg/kg.

8. References

Institut Bauen und Umwelt
Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);

General principles
for the EPD range of Institut Bauen und Umwelt e.V. (IBU), 2013/04
www.bau-umwelt.de

ISO 14025
DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804
EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

PCR Part B
Institut Bauen und Umwelt e.V., Berlin (pub.): Product Category Rules for Construction Products from the range of Environmental Product Declarations for Institut Bauen und Umwelt (IBU), Part B: Requirements on the EPD of wood based panels, 2013-10.

ISO 9001

ISO 14001

OHSAS 18001

ISO 16000

ANSI A208.1-2016
ANSI A208.1-2016, Particleboard.

ASTM D6007
ASTM D6007-14, Standard Test Method for Determining Formaldehyde Concentrations in Air from Wood Products Using a Small-Scale Chamber.

EN 310

EN 312

EN 317

EN 319
EN 319:1993, Particleboards and fibreboards. Determination of tensile strength perpendicular to the plane of the board.

EN 322

EN 323

EN 324

EN 717-1

EN 12524
EN 12524:2000, Building materials and products – Hygrothermal properties – Tabulated design values.

EN 14322
EN 13501
EN 13501-1:2010-01, Fire classification of construction products and building elements – Classification using test data from reaction to fire tests.

EN 13986
EN 13986:2015, Wood-based panels for use in construction – Characteristics, evaluation of conformity and marking.

EN 16485

EN ISO 50001

ecoinvent v.2.2: Life cycle inventory data, May 2010. Ecoinvent Center, Duebendorf.

ChemVerbotsV, Chemikalien-Verbotsverordnung (German Regulation on the Prohibition of Chemicals, from 14 October 1993).
<table>
<thead>
<tr>
<th>Program holder</th>
<th>Tel</th>
<th>Fax</th>
<th>Mail</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Bauen und Umwelt e.V.</td>
<td>+49 (0)30 3087748-0</td>
<td>+49 (0)30 3087748-29</td>
<td>info@bau-umwelt.com</td>
<td>www.bau-umwelt.com</td>
</tr>
<tr>
<td>Panoramastr. 1 10178 Berlin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author of the Life Cycle Assessment</th>
<th>Tel</th>
<th>Fax</th>
<th>Mail</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Werner Environment & Development</td>
<td>+41-44-241 39 06</td>
<td>-</td>
<td>frank@frankwerner.ch</td>
<td>www.frankwerner.ch</td>
</tr>
<tr>
<td>Idaplatz 3 8003 Zurich</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>Tel</th>
<th>Fax</th>
<th>Mail</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonae Indústria, S.G.P.S., S.A.</td>
<td>+351 22 0100585</td>
<td>+351 22 0100543</td>
<td>products@sonaeindustria.com</td>
<td>http://www.sonaeindustria.com</td>
</tr>
<tr>
<td>Lugar do Espido - Via Norte - 4471-9 09 Maia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>